Abstract
Abstract
We derive the relativistic non-resistive, viscous second-order magnetohydrodynamic equations for the dissipative quantities using the relaxation time approximation. The Boltzmann equation is solved for a system of particles and antiparticles using Chapman-Enskog like gradient expansion of the single-particle distribution function truncated at second order. In the first order, the transport coefficients are independent of the magnetic field. In the second-order, new transport coefficients that couple magnetic field and the dissipative quantities appear which are different from those obtained in the 14-moment approximation [1] in the presence of a magnetic field. However, in the limit of the weak magnetic field, the form of these equations are identical to the 14-moment approximation albeit with different values of these coefficients. We also derive the anisotropic transport coefficients in the Navier-Stokes limit.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference83 articles.
1. G.S. Denicol et al., Nonresistive dissipative magnetohydrodynamics from the Boltzmann equation in the 14-moment approximation, Phys. Rev. D 98 (2018) 076009 [arXiv:1804.05210] [INSPIRE].
2. A. Bzdak and V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions, Phys. Lett. B 710 (2012) 171 [arXiv:1111.1949] [INSPIRE].
3. W.-T. Deng and X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions, Phys. Rev. C 85 (2012) 044907 [arXiv:1201.5108] [INSPIRE].
4. K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions, Adv. High Energy Phys. 2013 (2013) 490495 [arXiv:1301.0099] [INSPIRE].
5. V. Roy and S. Pu, Event-by-event distribution of magnetic field energy over initial fluid energy density in $$ \sqrt{s_{\mathrm{NN}}} $$ = 200 GeV Au-Au collisions, Phys. Rev. C 92 (2015) 064902 [arXiv:1508.03761] [INSPIRE].
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献