Author:
Yang Lei,Li Shun,Jiang Yan,Shu Chi-Wang,Zhang Mengping
Funder
National Natural Science Foundation of China
National Science Foundation
Cyrus Tang Foundation
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Bastian, P., Engwer, C., Fahlke, J., Ippisch, O.: An unfitted discontinuous Galerkin method for pore-scale simulations of solute transport. Math. Comput. Simul. 81(10), 2051–2061 (2011)
2. Burman, Erik, Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012)
3. Carpenter, M.H., Gottlieb, D., Abarbanel, S., Don, W.-S.: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error. SIAM J. Sci. Comput. 16(6), 1241–1252 (1995)
4. Cheng, Z., Liu, S., Jiang, Y., Lu, J., Zhang, M., Zhang, S.: A high order boundary scheme to simulate complex moving rigid body under impingement of shock wave. Appl. Math. Mech. 42(6), 841–854 (2021)
5. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)