In vivo three-dimensional evaluation of tumour hypoxia in nasopharyngeal carcinomas using FMT-CT and MSOT

Author:

Huang Wenhui,Wang Kun,An Yu,Meng Hui,Gao Yuan,Xiong Zhiyuan,Yan Hao,Wang Qian,Cai Xuekang,Yang Xin,Zhang Bin,Chen Qiuying,Yang Xing,Tian Jie,Zhang ShuixingORCID

Abstract

Abstract Purpose Accurate evaluation of hypoxia is particularly important in patients with nasopharyngeal carcinoma (NPC) undergoing radiotherapy. The aim of this study was to propose a novel imaging strategy for quantitative three-dimensional (3D) evaluation of hypoxia in a small animal model of NPC. Methods A carbonic anhydrase IX (CAIX)-specific molecular probe (CAIX-800) was developed for imaging of hypoxia. Mouse models of subcutaneous, orthotopic, and spontaneous lymph node metastasis from NPC (5 mice per group) were established to assess the imaging strategy. A multi-modality imaging method that consisted of a hybrid combination of fluorescence molecular tomography-computed tomography (FMT-CT) and multispectral optoacoustic tomography (MSOT) was used for 3D quantitative evaluation of tumour hypoxia. Magnetic resonance imaging, histological examination, and immunohistochemical analysis were used as references for comparison and validation. Results In the early stage of NPC (2 weeks after implantation), FMT-CT enabled precise 3D localisation of the hypoxia biomarker with high sensitivity. At the advanced stage (6 weeks after implantation), MSOT allowed multispectral analysis of the biomarker and haemoglobin molecules with high resolution. The combination of high sensitivity and high resolution from FMT-CT and MSOT could not only detect hypoxia in small-sized NPCs but also visualise the heterogeneity of hypoxia in 3D. Conclusions Integration of FMT-CT and MSOT could allow comprehensive and quantifiable evaluation of hypoxia in NPC. These findings may potentially benefit patients with NPC undergoing radiotherapy in the future.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3