Connectivity based on glucose dynamics reveals exaggerated sensorimotor network coupling on subject-level in Parkinson’s disease

Author:

Ruppert-Junck Marina C.ORCID,Heinecke Vanessa,Librizzi Damiano,Steidel Kenan,Beckersjürgen Maya,Verburg Frederik A.,Schurrat Tino,Luster Markus,Müller Hans-Helge,Timmermann Lars,Eggers Carsten,Pedrosa David

Abstract

Abstract Purpose While fMRI provides information on the temporal changes in blood oxygenation, 2- [18F]fluoro-2-deoxy-D-glucose ([18F]FDG)-PET has traditionally offered a static snapshot of brain glucose consumption. As a result, studies investigating metabolic brain networks as potential biomarkers for neurodegeneration have primarily been conducted at the group level. However, recent pioneering studies introduced time-resolved [18F]FDG-PET with constant infusion, which enables metabolic connectivity studies at the individual level. Methods In the current study, this technique was employed to explore Parkinson’s disease (PD)-related alterations in individual metabolic connectivity, in comparison to inter-subject measures and hemodynamic connectivity. Fifteen PD patients and 14 healthy controls with comparable cognition underwent sequential resting-state dynamic PET with constant infusion and functional MRI. Intrinsic networks were identified by independent component analysis and interregional connectivity calculated for summed static PET images, PET time series and functional MRI. Results Our findings revealed an intrinsic sensorimotor network in PD patients that has not been previously observed to this extent. In PD, a significantly higher number of connections in cortical motor areas was observed compared to elderly control subjects, as indicated by both static PET and functional MRI (pBonferroni−Holm = 0.027), as well as constant infusion PET and functional MRI connectomes (pBonferroni−Holm = 0.012). This intensified coupling was associated with disease severity (ρ = 0.56, p = 0.036). Conclusion Metabolic connectivity, as revealed by both static and dynamic PET, provides unique information on metabolic network activity. Subject-level metabolic connectivity based on constant infusion PET may serve as a potential marker for the metabolic network signature in neurodegeneration.

Funder

Philipps-Universität Marburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3