Machine Learning–Based Prediction of Functional Disability: a Cohort Study of Japanese Older Adults in 2013–2019

Author:

Lu YongjianORCID,Sato KoryuORCID,Nagai Masato,Miyatake Hirokazu,Kondo Katsunori,Kondo Naoki

Abstract

Abstract Background It is important to identify older adults at high risk of functional disability and to take preventive measures for them at an early stage. To our knowledge, there are no studies that predict functional disability among community-dwelling older adults using machine learning algorithms. Objective To construct a model that can predict functional disability over 5 years using basic machine learning algorithms. Design A cohort study with a mean follow-up of 5.4 years. Participants We used data from the Japan Gerontological Evaluation Study, which involved 73,262 people aged  ≥ 65 years who were not certified as requiring long-term care. The baseline survey was conducted in 2013 in 19 municipalities. Main Measures We defined the onset of functional disability as the new certification of needing long-term care that was ascertained by linking participants to public registries of long-term care insurance. All 183 candidate predictors were measured by self-report questionnaires. Key Results During the study period, 16,361 (22.3%) participants experienced the onset of functional disability. Among machine learning–based models, ridge regression (C statistic = 0.818) and gradient boosting (0.817) effectively predicted functional disability. In both models, we identified age, self-rated health, variables related to falls and posture stabilization, and diagnoses of Parkinson’s disease and dementia as important features. Additionally, the ridge regression model identified the household characteristics such as the number of members, income, and receiving public assistance as important predictors, while the gradient boosting model selected moderate physical activity and driving. Based on the ridge regression model, we developed a simplified risk score for functional disability, and it also indicated good performance at the cut-off of 6/7 points. Conclusions Machine learning–based models showed effective performance prediction over 5 years. Our findings suggest that measuring and adding the variables identified as important features can improve the prediction of functional disability.

Funder

Japan Society for the Promotion of Science

Ministry of Health, Labour and Welfare

Japan Agency for Medical Research and Development

National Center for Geriatrics and Gerontology

Publisher

Springer Science and Business Media LLC

Subject

Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3