Abstract
AbstractWe classify global surfaces of section for flows on 3-manifolds defining Seifert fibrations. We discuss branched coverings—one way or the other—between surfaces of section for the Hopf flow and those for any other Seifert fibration of the 3-sphere, and we relate these surfaces of section to algebraic curves in weighted complex projective planes.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Albers, P., Geiges, H., Zehmisch, K.: A symplectic dynamics proof of the degree-genus formula. arXiv:1905.03054
2. Epstein, D.B.A.: Periodic flows on $$3$$-manifolds. Ann. Math. (2) 95, 66–82 (1972)
3. Geiges, H., Lange, C.: Seifert fibrations of lens spaces. Abh. Math. Sem. Univ. Hambg. 88, 1–22 (2018)
4. Geiges, H., Lange, C.: Correction to: Seifert fibrations of lens spaces. Abh. Math. Sem. Univ. Hambg. (to appear)
5. Ginzburg, V.L., Gurel, B.Z., Mazzucchelli, M.: On the spectral characterization of Besse and Zoll Reeb flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 38, 549–576 (2021)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献