Abstract
AbstractIn the recent paper Bürgisser and Lerario (Journal für die reine und angewandte Mathematik (Crelles J), 2016) introduced a geometric framework for a probabilistic study of real Schubert Problems. They denoted by $$\delta _{k,n}$$
δ
k
,
n
the average number of projective k-planes in $${\mathbb {R}}\mathrm {P}^n$$
R
P
n
that intersect $$(k+1)(n-k)$$
(
k
+
1
)
(
n
-
k
)
many random, independent and uniformly distributed linear projective subspaces of dimension $$n-k-1$$
n
-
k
-
1
. They called $$\delta _{k,n}$$
δ
k
,
n
the expected degree of the real Grassmannian $${\mathbb {G}}(k,n)$$
G
(
k
,
n
)
and, in the case $$k=1$$
k
=
1
, they proved that: $$\begin{aligned} \delta _{1,n}= \frac{8}{3\pi ^{5/2}} \cdot \left( \frac{\pi ^2}{4}\right) ^n \cdot n^{-1/2} \left( 1+{\mathcal {O}}\left( n^{-1}\right) \right) . \end{aligned}$$
δ
1
,
n
=
8
3
π
5
/
2
·
π
2
4
n
·
n
-
1
/
2
1
+
O
n
-
1
.
Here we generalize this result and prove that for every fixed integer $$k>0$$
k
>
0
and as $$n\rightarrow \infty $$
n
→
∞
, we have $$\begin{aligned} \delta _{k,n}=a_k \cdot \left( b_k\right) ^n\cdot n^{-\frac{k(k+1)}{4}}\left( 1+{\mathcal {O}}(n^{-1})\right) \end{aligned}$$
δ
k
,
n
=
a
k
·
b
k
n
·
n
-
k
(
k
+
1
)
4
1
+
O
(
n
-
1
)
where $$a_k$$
a
k
and $$b_k$$
b
k
are some (explicit) constants, and $$a_k$$
a
k
involves an interesting integral over the space of polynomials that have all real roots. For instance: $$\begin{aligned} \delta _{2,n}= \frac{9\sqrt{3}}{2048\sqrt{2\pi }} \cdot 8^n \cdot n^{-3/2} \left( 1+{\mathcal {O}}\left( n^{-1}\right) \right) . \end{aligned}$$
δ
2
,
n
=
9
3
2048
2
π
·
8
n
·
n
-
3
/
2
1
+
O
n
-
1
.
Moreover we prove that these numbers belong to the ring of periods intoduced by Kontsevich and Zagier and give an explicit formula for $$\delta _{1,n}$$
δ
1
,
n
involving a one-dimensional integral of certain combination of Elliptic functions.
Funder
Scuola Internazionale Superiore di Studi Avanzati - SISSA
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献