Temporally consistent video colorization with deep feature propagation and self-regularization learning

Author:

Liu Yihao,Zhao Hengyuan,Chan Kelvin C. K.,Wang Xintao,Loy Chen Change,Qiao Yu,Dong Chao

Abstract

AbstractVideo colorization is a challenging and highly ill-posed problem. Although recent years have witnessed remarkable progress in single image colorization, there is relatively less research effort on video colorization, and existing methods always suffer from severe flickering artifacts (temporal inconsistency) or unsatisfactory colorization. We address this problem from a new perspective, by jointly considering colorization and temporal consistency in a unified framework. Specifically, we propose a novel temporally consistent video colorization (TCVC) framework. TCVC effectively propagates frame-level deep features in a bidirectional way to enhance the temporal consistency of colorization. Furthermore, TCVC introduces a self-regularization learning (SRL) scheme to minimize the differences in predictions obtained using different time steps. SRL does not require any ground-truth color videos for training and can further improve temporal consistency. Experiments demonstrate that our method can not only provide visually pleasing colorized video, but also with clearly better temporal consistency than state-of-the-art methods. A video demo is provided at https://www.youtube.com/watch?v=c7dczMs-olE, while code is available at https://github.com/lyh-18/TCVC-Temporally-Consistent-Video-Colorization.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vitexco: Exemplar-based Video Colorization using Vision Transformer;2023 14th International Conference on Information and Communication Technology Convergence (ICTC);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3