Author:
Zhou Wenyang,Yuan Lu,Mu Taijiang
Abstract
Abstract3D-aware image synthesis has attained high quality and robust 3D consistency. Existing 3D controllable generative models are designed to synthesize 3D-aware images through a single modality, such as 2D segmentation or sketches, but lack the ability to finely control generated content, such as texture and age. In pursuit of enhancing user-guided controllability, we propose Multi3D, a 3D-aware controllable image synthesis model that supports multi-modal input. Our model can govern the geometry of the generated image using a 2D label map, such as a segmentation or sketch map, while concurrently regulating the appearance of the generated image through a textual description. To demonstrate the effectiveness of our method, we have conducted experiments on multiple datasets, including CelebAMask-HQ, AFHQ-cat, and shapenet-car. Qualitative and quantitative evaluations show that our method outperforms existing state-of-the-art methods.
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2672–2680, 2014.
2. Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. In: Proceedings of the International Conference on Learning Representations, 2018.
3. Karras, T.; Laine, S.; Aila, T. M. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4396–4405, 2019.
4. Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. M. Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8107–8116, 2020.
5. Isola, P.; Zhu, J. Y.; Zhou, T. H.; Efros, A. A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5967–5976, 2017.