Author:
Meng Wenlong,Bo Pengbo,Zhang Xiaodong,Hong Jixiang,Xin Shiqing,Tu Changhe
Abstract
AbstractVoronoi diagrams on triangulated surfaces based on the geodesic metric play a key role in many applications of computer graphics. Previous methods of constructing such Voronoi diagrams generally depended on having an exact geodesic metric. However, exact geodesic computation is time-consuming and has high memory usage, limiting wider application of geodesic Voronoi diagrams (GVDs). In order to overcome this issue, instead of using exact methods, we reformulate a graph method based on Steiner point insertion, as an effective way to obtain geodesic distances. Further, since a bisector comprises hyperbolic and line segments, we utilize Apollonius diagrams to encode complicated structures, enabling Voronoi diagrams to encode a medial-axis surface for a dense set of boundary samples. Based on these strategies, we present an approximation algorithm for efficient Voronoi diagram construction on triangulated surfaces. We also suggest a measure for evaluating similarity of our results to the exact GVD. Although our GVD results are constructed using approximate geodesic distances, we can get GVD results similar to exact results by inserting Steiner points on triangle edges. Experimental results on many 3D models indicate the improved speed and memory requirements compared to previous leading methods.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献