Recent Advances in Redox Flow Batteries Employing Metal Coordination Complexes as Redox-Active Species

Author:

Liu Bin,Li Yiju,Jia Guocheng,Zhao Tianshou

Abstract

AbstractRedox flow batteries (RFBs) that employ sustainable, abundant, and structure-tunable redox-active species are of great interest for large-scale energy storage. As a vital class of redox-active species, metal coordination complexes (MCCs) possessing the properties of both the organic ligands and transition metal ion centers are attracting increasing attention due to the advantages of multielectron charge transfer, high structural tailorability, and reduced material crossover. Herein, we present a critical overview of RFBs that employ MCCs as redox-active materials in both aqueous and nonaqueous mediums. The progress is comprehensively summarized, including the design strategies, solubility characteristics, electrochemical properties, and battery cycling performance of MCCs. Emphasis is placed on the ligand selection and modification strategies used to tune the critical properties of MCCs, including their redox potential, solubility, cycling stability, and electron transfer redox reactions, to achieve stable cycled RFBs with a high energy density. Furthermore, we discuss the current challenges and perspectives related to the development of MCC-based RFBs for large-scale energy storage implementations. Graphical abstract

Funder

Research Grants Council, University Grants Committee

Hong Kong University of Science and Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3