Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective

Author:

Zou Jiexin,Han Ning,Yan Jiangyan,Feng Qi,Wang Yajun,Zhao Zhiliang,Fan Jiantao,Zeng Lin,Li Hui,Wang Haijiang

Abstract

Abstract Hydrogen is an ideal energy carrier in future applications due to clean byproducts and high efficiency. However, many challenges remain in the application of hydrogen, including hydrogen production, delivery, storage and conversion. In terms of hydrogen storage, two compression modes (mechanical and non-mechanical compressors) are generally used to increase volume density in which mechanical compressors with several classifications including reciprocating piston compressors, hydrogen diaphragm compressors and ionic liquid compressors produce significant noise and vibration and are expensive and inefficient. Alternatively, non-mechanical compressors are faced with issues involving large-volume requirements, slow reaction kinetics and the need for special thermal control systems, all of which limit large-scale development. As a result, modular, safe, inexpensive and efficient methods for hydrogen storage are urgently needed. And because electrochemical hydrogen compressors (EHCs) are modular, highly efficient and possess hydrogen purification functions with no moving parts, they are becoming increasingly prominent. Based on all of this and for the first time, this review will provide an overview of various hydrogen compression technologies and discuss corresponding structures, principles, advantages and limitations. This review will also comprehensively present the recent progress and existing issues of EHCs and future hydrogen compression techniques as well as corresponding containment membranes, catalysts, gas diffusion layers and flow fields. Furthermore, engineering perspectives are discussed to further enhance the performance of EHCs in terms of the thermal management, water management and the testing protocol of EHC stacks. Overall, the deeper understanding of potential relationships between performance and component design in EHCs as presented in this review can guide the future development of anticipated EHCs. Graphic Abstract

Funder

National Basic Research Program of China

Guangdong Innovative and Entrepreneurial Research Team Program

Shenzhen Peacock Plan

Shenzhen Key Laboratory of Neuropsychiatric Modulation

Shenzhen Clean Energy Research Institute

Development and Reform Commission of Shenzhen Municipality 2017

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3