Abstract
Abstract
The integral of an arbitrary two-loop modular graph function over the fundamental domain for SL(2, ℤ) in the upper half plane is evaluated using recent results on the Poincaré series for these functions.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference27 articles.
1. E. D’Hoker, M.B. Green and P. Vanhove, On the modular structure of the genus-one Type II superstring low energy expansion, JHEP
08 (2015) 041 [arXiv:1502.06698] [INSPIRE].
2. E. D’Hoker, M.B. Green, Ö. Gürdoğan and P. Vanhove, Modular Graph Functions, Commun. Num. Theor. Phys.
11 (2017) 165 [arXiv:1512.06779] [INSPIRE].
3. M.B. Green and P. Vanhove, The Low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev.
D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].
4. M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP
02 (2008) 020 [arXiv:0801.0322] [INSPIRE].
5. E. D’Hoker, M.B. Green and P. Vanhove, Proof of a modular relation between 1-, 2- and 3-loop Feynman diagrams on a torus, arXiv:1509.00363 [INSPIRE].
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献