Enhancing source domain availability through data and feature transfer learning for building power load forecasting
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s12273-023-1087-0.pdf
Reference43 articles.
1. Ahmad T, Chen H (2019). Deep learning for multi-scale smart energy forecasting. Energy, 175: 98–112.
2. Antoniadis A, Gaucher S, Goude Y (2023). Hierarchical transfer learning with applications to electricity load forecasting. International Journal of Forecasting, https://doi.org/10.1016/j.ijforecast.2023.04.006
3. Antonopoulos I, Robu V, Couraud B, et al. (2020). Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, 130: 109899.
4. Dai W, Yang Q, Xue G, et al. (2007). Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine learning, Corvalis, OR, USA.
5. Fan C, Sun Y, Xiao F, et al. (2020). Statistical investigations of transfer learning-based methodology for short-term building energy predictions. Applied Energy, 262: 114499.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning;Energy;2024-07
2. A dynamic multi-model transfer based short-term load forecasting;Applied Soft Computing;2024-07
3. Application Research of Artificial Intelligence in Distributed Energy Management System;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3