Building moisture diagnosis: Processing, assessing and representation of environmental data for root cause analysis of mould growth

Author:

Lopez-Arce Paula,Altamirano-Medina Hector,Berry James,Rovas Dimitrios,Sarce Fernando,Hodgson Steve

Abstract

AbstractThe occurrence of surface condensation and mould can lead to concerns of poor indoor air quality and adverse health implications of occupants. Remedial actions require identification of the root causes, but this can be challenging even for experts. The focus of the research is the development of a diagnostic tool that helps to streamline root cause analysis. The diagnostic method comprises a protocol with guidelines for installation of sensors, easy data collection, and a set of calculations to process environmental information. Environmental parameters collected and calculated from an environmental monitoring exercise of dwellings with and without mould, include physical properties associated with the indoor surface of external walls and surrounding air conditions. The methodology relies on linking specific surface and air environmental parameters together with critical thresholds proposed for the control and avoidance of surface condensation and mould growth in dwellings. These parameters were assessed and used to determine the likely causal factors of a moisture imbalanced environment leading to surface condensation and mould growth; poor thermal building envelope performance, an imbalanced heat-moisture regime, and/or insufficient ventilation. Examples from different scenarios are presented to show the process towards environmental data collection, post-processing to compute and assess pertinent parameters, and the display of environmental conditions in a clear and easy-to-interpret manner. The novel developed system is a time-saving method for processing and represents environmental data. It provides a straightforward building moisture index (BMI) and a systematic diagnostic procedure for environmental assessment and possible causes of mould growth. This helps to support neutral decision making, to identify rectification strategies and direct to more cost-efficient solutions to existing damp and mould problems in buildings.

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3