Solidification phenomena in creep resistant 9Cr weld metals and their implications on mechanical properties

Author:

Nitsche A.ORCID

Abstract

AbstractMartensitic 9% Cr steels play an important role in the implementation of modern and efficiency-enhanced power generation technologies. In the presented study, metallurgical solidification phenomena in heat-resistant 9% Cr filler metals and their effects on the mechanical properties of the weld metal were analysed. The focus was on welded joints of steel grades P91 and CB2, which were welded with flux-cored wires. The investigation of welded joints and weld metals in the creep-damaged and unloaded condition provided detailed inspects into the formation and development of inhomogeneous areas. The microstructure of the individual weld metals was characterized in detail in the as-welded and in the heat-treated condition. It became apparent that inhomogeneities were formed in large areas of the weld metal. In particular, EDX measurements made it possible to explain these solidification phenomena and trace their development within the manufacturing process of the welded joints. It was found that even a slight uneven distribution of chromium and a diffusion of carbon caused extensive negative effects on the development of weld metal microstructures. In addition, the influence of these microstructural inhomogeneities on both the mechanical weld metal properties and the creep rupture strength is discussed. Finally, test welds were performed to optimize the microstructure of the flux-cored wire weld metal and possibilities to avoid microstructural inhomogeneities were derived. The results show that the short-term and long-term properties of the weld metal are affected by the inhomogeneous areas within the weld metal. In summary, it can be assumed that for steel grades P91 and CB2 the safety of plants in high-temperature operation is not endangered.

Funder

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructure homogenisation by adapting the melting behaviour of flux-cored wires in GMAW;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2024-01-31

2. Investigation on the Microstructure and Mechanical Properties of ASTM A131 Steel Manufactured by Different Welding Methods;Advances in Materials Science;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3