Abstract
AbstractThe material characteristics of high toughness and high strength in steel are usually not available at the same time. However, it would be an advantage if high-strength steels would show high impact toughness also at lower temperatures for applications in critical surroundings. In this paper, an approach of multi-layer welding of high-strength steel is presented in order to increase the weld-metal toughness using wire material in combination with thermal cycle modifications. Promising interlocking microstructures were found after multiple tempering of the previously applied structure at homogeneously distributed material in the weld seam. It was found that short thermal cycles during laser processing lead to insufficient time for carbon diffusion, which leads to remaining ferrite structures in contrast to the prediction of welding transformation diagrams. The additionally applied heating cycles during multi-layer laser welding induce the formation of interlocking microstructures that help to increase the weld seam toughness.
Funder
Research Fund for Coal and Steel
VINNOVA
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献