Evaluation of fractionally distilled Picea abies TMP-turpentine on wood-decaying fungi: in vitro, microcosm and field experiments

Author:

Ljunggren JoelORCID,Edman Mattias,Jonsson Bengt Gunnar,Bylund Dan,Hedenström Erik

Abstract

AbstractSynthetic and heavy metal antifungals are frequently used as wood preservatives. However, they exhibit relatively inert biodegradation and toxic properties when leached; this makes their replacement with environmentally degradable yet functional alternatives a key target in the wood protection industry. In this context, distilled fractions of raw thermomechanical pulp turpentine (TMP-T) from Picea abies were assessed for their wood protecting capabilities against wood-decaying fungi. Antifungal bioactivity of fractions and some of their combinations were screened on agar-plates against the brown-rot fungus Coniophora puteana. Addition of TMP-T fractions showed a significant fungal growth rate reduction, while mixtures indicated the presence of synergistic and antagonistic effects. One fraction, obtained after distilling 1 L TMP-T at 111–177 °C at 0.5 mbar, showed complete growth inhibition of Antrodia sinuosa, Serpula lacrymans, Serpula himantioides and significant inhibition of Antrodia serialis, Antrodia xantha, Gloeophyllum sepiarium, Heterobasidion parviporum at a concentration of 1000 ppm. This fraction was further examined for long- and medium-term effects on wood decay in microcosm soil-jar and field experiment, respectively. The known antifungal compounds benzisothiazolinone, 2-octyl-4-isothiazolin-3-one, 3-iodo-2-propynyl N-butylcarbamate and two commercial wood preservatives were used as reference treatments. Commercial preservatives instilled long-term efficacy against C. puteana wood decay in a soil-jar microcosm experiment, but no noticeable protection with antifungal compounds or the present treatments was found. However, a moderate effect by the TMP-T fraction from the in vitro assay was observed and the TMP-turpentine distillation residue showed a similar fungal inhibition effect to the most potent commercial treatment after 29 months in the field.

Funder

Länsstyrelsen Västernorrland

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Plant Science,General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3