Examining the simulation-to-reality gap of a wheel loader digging in deformable terrain

Author:

Aoshima KojiORCID,Servin MartinORCID

Abstract

AbstractWe investigate how well a physics-based simulator can replicate a real wheel loader performing bucket filling in a pile of soil. The comparison is made using field-test time series of the vehicle motion and actuation forces, loaded mass, and total work. The vehicle was modeled as a rigid multibody system with frictional contacts, driveline, and linear actuators. For the soil, we tested discrete-element models of different resolutions, with and without multiscale acceleration. The spatiotemporal resolution ranged between 50–400 mm and 2–500 ms, and the computational speed was between 1/10,000 to 5 times faster than real time. The simulation-to-reality gap was found to be around 10% and exhibited a weak dependence on the level of fidelity, e.g., compatible with real-time simulation. Furthermore, the sensitivity of an optimized force-feedback controller under transfer between different simulation domains was investigated. The domain bias was observed to cause a performance reduction of 5% despite the domain gap being about 15%.

Funder

Komatsu

Umea University

Publisher

Springer Science and Business Media LLC

Reference49 articles.

1. Allevato, A.D., Schaertl Short, E., Pryor, M., Thomaz, A.L.: Iterative residual tuning for system identification and sim-to-real robot learning. Auton. Robots 44, 1167–1182 (2020)

2. Aoshima, K., Fälldin, A., Wadbro, E., Servin, M.: World modeling for autonomous wheel loaders (2023). ArXiv preprint arXiv:2309.12016

3. Aoshima, K., Servin, M., Wadbro, E.: Simulation-based optimization of high-performance wheel loading. In: Feng, C., et al. (eds.) Proceedings of the 38th International Symposium on Automation and Robotics in Construction (ISARC), Dubai, UAE, November 2021, pp. 688–695. International Association for Automation and Robotics in Construction (IAARC) (2021)

4. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: ICML, vol. 97, pp. 12–20 (1997)

5. Azulay, O., Shapiro, A.: Wheel loader scooping controller using deep reinforcement learning. IEEE Access 9, 24145–24154 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3