Reliability evaluation of reinforcement learning methods for mechanical systems with increasing complexity

Author:

Manzl Peter,Rogov Oleg,Gerstmayr Johannes,Mikkola Aki,Orzechowski Grzegorz

Abstract

AbstractReinforcement learning (RL) is one of the emerging fields of artificial intelligence (AI) intended for designing agents that take actions in the physical environment. RL has many vital applications, including robotics and autonomous vehicles. The key characteristic of RL is its ability to learn from experience without requiring direct programming or supervision. To learn, an agent interacts with an environment by acting and observing the resulting states and rewards. In most practical applications, an environment is implemented as a virtual system due to cost, time, and safety concerns. Simultaneously, multibody system dynamics (MSD) is a framework for efficiently and systematically developing virtual systems of arbitrary complexity. MSD is commonly used to create virtual models of robots, vehicles, machinery, and humans. The features of RL and MSD make them perfect companions in building sophisticated, automated, and autonomous mechatronic systems. The research demonstrates the use of RL in controlling multibody systems. While AI methods are used to solve some of the most challenging tasks in engineering, their proper understanding and implementation are demanding. Therefore, we introduce and detail three commonly used RL algorithms to control the inverted N-pendulum on the cart. Single-, double-, and triple-pendulum configurations are investigated, showing the capability of RL methods to handle increasingly complex dynamical systems. We show 2D state space zones where the agent succeeds or fails the stabilization. Despite passing randomized tests during training, blind spots may occur where the agent’s policy fails. Results confirm that RL is a versatile, although complex, control engineering approach.

Funder

Business Finland

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3