A Study on Tool Breakage Detection During Milling Process Using LSTM-Autoencoder and Gaussian Mixture Model
Author:
Funder
University of Seoul
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering
Link
https://link.springer.com/content/pdf/10.1007/s12541-022-00647-w.pdf
Reference13 articles.
1. Cho, S., Asfour, S., Onar, A., & Kaundinya, N. (2005). Tool breakage detection using support vector machine learning in a milling process. International Journal of Machine Tools and Manufacture, 45(3), 241–249.
2. Hesser, D. F., & Markert, B. (2019). Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manufacturing Letters, 19, 1–4.
3. Neslušan, M., Mičieta, B., Mičietová, A., Čilliková, M., & Mrkvica, I. (2015). Detection of tool breakage during hard turning through acoustic emission at low removal rates. Measurement, 70, 1–13.
4. Sun, S., Hu, X., & Zhang, W. (2020). Detection of tool breakage during milling process through acoustic emission. The International Journal of Advanced Manufacturing Technology, 109(5), 1409–1418.
5. Li, W., & Liu, T. (2019). Time varying and condition adaptive hidden Markov model for tool wear state estimation and remaining useful life prediction in micro-milling. Mechanical Systems and Signal Processing, 131, 689–702.
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research progress on intelligent monitoring of tool condition based on deep learning;The International Journal of Advanced Manufacturing Technology;2024-08-20
2. Development of a Real-Time Anomaly Detection System for Dry Vacuum Pumps Using Low-Cost IoT Devices and Machine Learning;International Journal of Precision Engineering and Manufacturing;2024-06-14
3. An end-to-end deep learning approach for tool wear condition monitoring;The International Journal of Advanced Manufacturing Technology;2024-06-12
4. Super-Resolution Imaging of Sub-diffraction-Limited Pattern with Superlens Based on Deep Learning;International Journal of Precision Engineering and Manufacturing;2024-05-30
5. A Novel Temperature Rise Prediction Method of Multi-component Feed System for CNC Machine Tool Based on Multi-source Fusion of Heterogeneous Correlation Information;International Journal of Precision Engineering and Manufacturing;2024-05-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3