Abstract
AbstractIn a k-step adaptive linear multistep methods the coefficients depend on the k − 1 most recent step size ratios. In a similar way, both the actual and the estimated local error will depend on these step ratios. The classical error model has been the asymptotic model, chp+ 1y(p+ 1)(t), based on the constant step size analysis, where all past step sizes simultaneously go to zero. This does not reflect actual computations with multistep methods, where the step size control selects the next step, based on error information from previously accepted steps and the recent step size history. In variable step size implementations the error model must therefore be dynamic and include past step ratios, even in the asymptotic regime. In this paper we derive dynamic asymptotic models of the local error and its estimator, and show how to use dynamically compensated step size controllers that keep the asymptotic local error near a prescribed tolerance tol. The new error models enable the use of controllers with enhanced stability, producing more regular step size sequences. Numerical examples illustrate the impact of dynamically compensated control, and that the proper choice of error estimator affects efficiency.
Funder
Magyar Tudományos Akadémia
Hungarian Government and European Social Fund
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献