Abstract
AbstractIn this paper, we derive a new exponential wave integrator sine pseudo-spectral (EWI-SP) method for the higher-order Boussinesq equation involving the higher-order effects of dispersion. The method is fully-explicit and it has fourth order accuracy in time and spectral accuracy in space. We rigorously carry out error analysis and establish error bounds in the Sobolev spaces. The performance of the EWI-SP method is illustrated by examining the long-time evolution of the single solitary wave, single wave splitting, and head-on collision of solitary waves. Numerical experiments confirm the theoretical results.
Funder
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Bilimsel Araştırma Projeleri Birimi, İstanbul Teknik Üniversitesi
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Rosenau, P.: Dynamics of dense discrete systems: high order effects. Prog. Theor. Phys. 79(5), 1028–1042 (1988). https://doi.org/10.1143/PTP.79.1028
2. Duruk, N., Erkip, A., Erbay, H.A.: A higher-order Boussinesq equation in locally non-linear theory of one-dimensional non-local elasticity. IMA J. Appl. Math. 74(1), 97–106 (2008). https://doi.org/10.1093/imamat/hxn020
3. Schneider, G.: The long wave limit for a Boussinesq equation. SIAM J. Appl. Math. 58(4), 1237–1245 (1998). https://doi.org/10.1137/s0036139995287946
4. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872)
5. Bogolubsky, I.L.: Some examples of inelastic soliton interaction. Comput. Phys. Commun. 13(3), 149–155 (1977). https://doi.org/10.1016/0010-4655(77)90009-1