Tensor theta norms and low rank recovery

Author:

Rauhut HolgerORCID,Stojanac Željka

Abstract

AbstractWe study extensions of compressive sensing and low rank matrix recovery to the recovery of tensors of low rank from incomplete linear information. While the reconstruction of low rank matrices via nuclear norm minimization is rather well-understand by now, almost no theory is available so far for the extension to higher order tensors due to various theoretical and computational difficulties arising for tensor decompositions. In fact, nuclear norm minimization for matrix recovery is a tractable convex relaxation approach, but the extension of the nuclear norm to tensors is in general NP-hard to compute. In this article, we introduce convex relaxations of the tensor nuclear norm which are computable in polynomial time via semidefinite programming. Our approach is based on theta bodies, a concept from real computational algebraic geometry which is similar to the one of the better known Lasserre relaxations. We introduce polynomial ideals which are generated by the second-order minors corresponding to different matricizations of the tensor (where the tensor entries are treated as variables) such that the nuclear norm ball is the convex hull of the algebraic variety of the ideal. The theta body of order k for such an ideal generates a new norm which we call the θk-norm. We show that in the matrix case, these norms reduce to the standard nuclear norm. For tensors of order three or higher however, we indeed obtain new norms. The sequence of the corresponding unit-θk-norm balls converges asymptotically to the unit tensor nuclear norm ball. By providing the Gröbner basis for the ideals, we explicitly give semidefinite programs for the computation of the θk-norm and for the minimization of the θk-norm under an affine constraint. Finally, numerical experiments for order-three tensor recovery via θ1-norm minimization suggest that our approach successfully reconstructs tensors of low rank from incomplete linear (random) measurements.

Funder

FP7 Ideas: European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerated non-negative tensor completion via integer programming;Frontiers in Applied Mathematics and Statistics;2023-07-20

2. Algebraic compressed sensing;Applied and Computational Harmonic Analysis;2023-07

3. Proximal gradient algorithm for nonconvex low tubal rank tensor recovery;BIT Numerical Mathematics;2023-04-04

4. Compressive Gate Set Tomography;PRX Quantum;2023-03-10

5. Tensor ring decomposition-based model with interpretable gradient factors regularization for tensor completion;Knowledge-Based Systems;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3