Feasibility of Intelligent Models for Prediction of Utilization Factor of TBM
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geology,Soil Science,Geotechnical Engineering and Engineering Geology,Architecture
Link
http://link.springer.com/content/pdf/10.1007/s10706-020-01213-9.pdf
Reference81 articles.
1. Abdi-Khanghah M, Bemani A, Naserzadeh Z, Zhang Z (2018) Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN. J CO2 Util 25:108–119. https://doi.org/10.1016/j.jcou.2018.03.008
2. Amoun S, Sharifzadeh M, Shahriar K, Rostami J, Azali ST (2017) Evaluation of tool wear in EPB tunneling of Tehran Metro, Line 7 Expansion. Tunn Undergr Space Technol 61:233–246. https://doi.org/10.1016/j.tust.2016.11.001
3. Armaghani DJ, Mohamad ET, Narayanasamy MS, Narita N, Yagiz S (2017a) Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn Undergr Space Technol 63:29–43. https://doi.org/10.1016/j.tust.2016.12.009
4. Armaghani DJ, Raja RSNSB, Faizi K, Rashid ASA (2017b) Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput Appl 28(2):391–405. https://doi.org/10.1007/s00521-015-2072-z
5. Aryafar A, Mikaeil R, Haghshenas SS, Haghshenas SS (2018) Application of metaheuristic algorithms to optimal clustering of sawing machine vibration. Measurement 124:20–31. https://doi.org/10.1016/j.measurement.2018.03.056
Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. TBM tunneling strata automatic identification and working conditions decision support;Automation in Construction;2024-07
2. Decision Tree Models for Predicting Liquefaction-Induced Settlement of Buildings with Shallow Foundations Subjected to Seismic Excitation;2024-06-17
3. Experimental Study on the Performance and Mechanism of High-Pressure Abrasive Waterjet Cutting Hard Rock;Geotechnical and Geological Engineering;2024-01-22
4. Optimizing Seismic Earth Pressure Estimates for Battered Retaining Walls Using Numerical Methods and ANN;Geotechnical and Geological Engineering;2024-01-20
5. Machine Learning Models to Evaluate the Load-Settlement Behavior of Piles from Cone Penetration Test Data;Geotechnical and Geological Engineering;2024-01-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3