1. Audibert, J.Y., Bubeck, S.: Minimax policies for adversarial and stochastic bandits. In: Proceedings of the 22nd Annual Conference on Learning Theory. Omnipress (2009)
2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM Journal on Computing 32(1), 48–77 (2003)
3. Borsboom, J., Saito, J., Chaslot, G., Uiterwijk, J.: A comparison of Monte-Carlo methods for Phantom Go. In: Proc. 19th Belgian–Dutch Conference on Artificial Intelligence–BNAIC, Utrecht, The Netherlands (2007)
4. Brown, G.W.: Iterative solution of games by fictitious play. Activity Analysis of Production and Allocation 13(1), 374–376 (1951)
5. Lecture Notes in Computer Science;T. Cazenave,2006