1. Ahlmann-Ohlsen, K.S., Jensen, F.V., Nielsen, T.D., Pedersen, O., Vomlelová, M.: A Comparison of two Approaches for Solving Unconstrained Influence Diagrams. Int. J. of Approximate Reasoning 50(1), 153–173 (2009)
2. Chai, X., Deng, L., Yang, Q., Ling, C.X.: Test-Cost Sensitive Naive Bayes Classification. In: IEEE Int. Conf. on Data Mining, pp. 51–58 (2004)
3. Domingos, P.: MetaCost: A General Method for Making Classifiers Cost-Sensitive. In: Proc. 5th Int. Conf. on Knowledge Discovery and Data Mining, pp. 155–164 (1999)
4. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proc. 17th Int. Joint Conf. on Artificial Intelligence, pp. 973–978 (2001)
5. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml