1. Benveniste, A., Métivier, M., & Priouret, P. (1990).Adaptive algorithms and stochastic approximation. Berlin: Springer-Verlag.
2. Dayan, P. (1992). The convergence of TD(?) for general ?.Machine Learning, 8, 341?362.
3. Geman, S., Bienenstock, E., & Doursat, R. (1991). Neural networks and the bias/variance dilemma.Neural Computation, 4, 1?58.
4. Kuan, C.M., & White, H. (1990).Recursive m-estimation, non-linear regression and neural network learning with dependent observations (discussion paper). Department of Economics, University of California at San Diego.
5. Kuan, C.M., & White, H. (1991).Strong convergence of recursive m-estimators for models with dynamic latent variables (discussion paper 91-05). Department of Economics, University of California at San Diego.