Abstract
AbstractThis paper studies proof systems for the logics of super-strict implication$$\textsf{ST2}$$ST2–$$\textsf{ST5}$$ST5, which correspond to C.I. Lewis’ systems$$\textsf{S2}$$S2–$$\textsf{S5}$$S5freed of paradoxes of strict implication. First, Hilbert-style axiomatic systems are introduced and shown to be sound and complete by simulating$$\textsf{STn}$$STnin$$\textsf{Sn}$$Snand backsimulating$$\textsf{Sn}$$Snin$$\textsf{STn}$$STn, respectively (for$${\textsf{n}} =2, \ldots , 5$$n=2,…,5). Next,$$\textsf{G3}$$G3-style labelled sequent calculi are investigated. It is shown that these calculi have the good structural properties that are distinctive of$$\textsf{G3}$$G3-style calculi, that they are sound and complete, and it is shown that the proof search for$$\mathsf {G3.ST2}$$G3.ST2is terminating and therefore the logic is decidable.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
History and Philosophy of Science,Logic
Reference34 articles.
1. Anderson, A.R., and N. Belnap, Entailment. The Logic of Relevance and Necessity vol. 1. Princeton University Press, Princeton, 1975.
2. Cresswell, M., and G.H. Hughes, A New Introduction to Modal Logic, Routledge, London, 1996.
3. Crupi, V., and A. Iacona, The evidential conditional, Erkenntnishttps://doi.org/10.1007/s10670-020-00332-2, 2020.
4. Gherardi, G., and E. Orlandelli, Super-strict implications, Bulletin of the Section of Logic 50(1):1–34. https://doi.org/10.18778/0138-0680.2021.02, 2021.
5. Gherardi, G., and E. Orlandelli, Non-normal super-strict implications, in A. Indrzejczak, and M. Zawidzki, (eds.), Proceedings of the 10th International Conference on Non-Classical Logics. Theory and Applications, EPTCS, Sydney, https://doi.org/10.4204/EPTCS.358.1, 2022, pp. 1–11.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Implicative Conditional;Journal of Philosophical Logic;2023-11-27