Author:
Valliyammai C.,Kiliroor Cinu C.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications
Reference27 articles.
1. Wang, D., & Pu, C. (2015). BEAN: A behaviour analysis approach of url spam filtering in twitter. In Proceedings of the IEEE international conference on information reuse and integration, San Francisco (pp. 403–410).
2. Chao, C., Jun, Z., Yi, X., Yang, X., Wanlei, Z., Mohammad, M. H., et al. (2015). A performance evaluation of machine learning based streaming spam tweets detection. IEEE Transactions on Computational Social Systems,2, 65–76.
3. Jong, M. K, Zae, K., & Kwangjo, K. (2016). An approach to spam comment detection through domain-independent features. In Proceedings of the IEEE international conference on big data and smart computing (pp. 273–276).
4. Injadat, M., Salo, F., & Nassif, A. B. (2016). Data mining techniques in social media: A survey. Elsevier Journal on Neurocomputing,214, 654–670.
5. Kaur, R., & Singh, S. (2016). A survey of data mining and social network analysis based anomaly detection techniques. Journal of Egyptian Informatics,17(2), 199–216.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Identification and Filtering of Web Spams Using a Machine Learning Method;International Journal of Computational Intelligence and Applications;2022-12