1. Rains, J., ur Rehman Kazim, J., Tukmanov, A., Zhang, L., Abbasi, Q. H., & Imran, M. A. (2023). Intelligent reconfigurable surfaces (IRS) for prospective 6G wireless networks. IEEE.
2. Sanchez, S. G., Reus-Muns, G., Bocanegra, C., Li, Y., Muncuk, U., Naderi, Y., Wang, Y., Ioannidis, S., & Chowdhury, K. R. (2022). AirNN: Over-the-air computation for neural networks via reconfigurable intelligent surfaces. IEEE/ACM Transactions on Networking, 6, 66.
3. Chen, Y., Wang, Y., & Wang, Z. (2022). Reconfigurable intelligent surface aided high-mobility millimeter wave communications with dynamic dual-structured sparsity. IEEE Transactions on Wireless Communications, 6, 66.
4. Chen, Z., Chen, L., Tian, Z., Wang, M., Jia, Y., & Dai, L. (2022). Ergodic rate of reconfigurable intelligent surface-assisted multigroup multicast system. IEEE Transactions on Vehicular Technology, 6, 66.
5. Zan, S., Pang, Y., Gravina, R., Cao, E., Li, Y., & Zang, W. (2022). A deep reinforcement learning based approach for intelligent reconfigurable surface elements selection. In 2022 IEEE international conference on dependable, autonomic and secure computing, international conference on pervasive intelligence and computing, international conference on cloud and big data computing, international conference on cyber science and technology congress (DASC/PiCom/CBDCom/CyberSciTech.