Performance Enhancement of Indoor Cellular Visible Light Communication through Cell Size and Wavelength Reuse Pattern

Author:

Elsayed Rania A.,Diab Youssef A.,Hussein Khalid F. A.,Farahat Asmaa E. A.,Hamdi Azhar A.

Abstract

AbstractThe emerging technology of visible light communication (VLC) has become a promising solution for the requirements of wide-bandwidth, high-speed, and infinite-capacity wireless communication networks. A novel design of high-performance multi-user indoor visible light communication (VLC) based on hexagonal-cell arrangement is introduced in the present paper. The wavelength division multiple access (WDMA) is used to enable multiple users to communicate through the network of access point (APs) by assigning a unique wavelength division channel (WDC) to each user. A wavelength reuse scheme is utilized to increase the maximum number of users in the system and to enhance the VLC system capacity. The on–off keying (OOK) is used as the modulation technique for light signaling. The intercell interference (ICI) caused by the wavelength reuse is evaluated and its dependence on the cell radius and the wavelength reuse pattern size is numerically investigated. Both the received power density and the ICI at the location of the moving user are evaluated and the resulting signal-to-ICI ratio (SICIR) is calculated at every point over the indoor area. The VLC system capacity is evaluated and its dependence on the design parameters including the cell radius, the size of the wavelength reuse pattern, and the user data rate is numerically investigated. A design procedure is proposed to minimize the bit-error rate (BER) resulting from the ICI and to maximize the system capacity and the maximum allowable number of users in the system by selecting the optimal radius of the hexagonal cells and the most appropriate size of the frequency reuse pattern. The effect of the data rate per user on the system capacity is numerically investigated. It is shown that a SICR of greater than 21 dB and BER of less than 1 × 10−15 is achieved. Also, a system capacity of more than 4 bps/Hz is achieved by the application of the proposed VLC design optimization procedure.

Funder

Electronics Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3