A Novel Efficient Heuristic Based Localization Paradigm in Wireless Sensor Network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications
Link
http://link.springer.com/content/pdf/10.1007/s11277-021-08091-1.pdf
Reference27 articles.
1. Kumar, G., Saha, R., Rai, M. K., Thomas, R., et al. (2020). A lattice signcrypted secured localization in wireless sensor networks. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2019.2961476.
2. Ren, Q., Zhang, Y., Nikolaidis, I., Li, J., & Pan, Y. (2020). RSSI quantization and genetic algorithm based localization in wireless sensor networks. Ad Hoc Networks, 107, 102255. https://doi.org/10.1016/j.adhoc.2020.102255.
3. Dai, Z., Wang, G., Jin, X., & Lou, X. (2020). Nearly optimal sensor selection for TDOA-based source localization in wireless sensor networks. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2020.3011118.
4. Xu, H. (2020). Semi-supervised manifold learning based on polynomial mapping for localization in wireless sensor networks. Signal Processing. https://doi.org/10.1016/j.sigpro.2020.107570.
5. Goyat, R., Kumar, G., Rai, M. K., Saha, R., Thomas, R., et al. (2020). Blockchain powered secure range-free localization in wireless sensor networks. Arabian Journal for Science and Engineering, 45(8), 6139–6155. https://doi.org/10.1007/s13369-020-04493-8.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Radio Environment Map Construction Based on Privacy-Centric Federated Learning;IEEE Access;2024
2. Node localization in WSN using the slime mould algorithm;2023 6th International Conference on Signal Processing and Information Security (ICSPIS);2023-11-08
3. Node localization in wireless sensor networks using a hyper-heuristic DEEC-Gaussian gradient distance algorithm;Scientific African;2023-03
4. Dynamic Noisy Measurement Aware Localization Model for Wireless Sensor Networks;Journal of Interconnection Networks;2022-05-10
5. Range-free localization for GWSN using k-NN algorithm with local linear Gaussian kernel regression (KGR);Evolving Systems;2022-04-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3