1. Hunt, T., Song, C., Shokri, R., Shmatikov, V., & Witchel, E. (2018). “Chiron: Privacy-preserving Machine Learning as a Service,” arXiv, Mar. 2018, Accessed: May 11, 2021. [Online]. Available: http://arxiv.org/abs/1803.05961.
2. Nie, J., Luo, J., Xiong, Z., Niyato, D., & Wang, P. (2019). A stackelberg game approach toward socially-aware incentive mechanisms for mobile crowdsensing. IEEE Transactions on Wireless Communications, 18(1), 724–738. https://doi.org/10.1109/TWC.2018.2885747
3. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q. & Qi, H. (2018). “Beyond inferring class representatives: user-level privacy leakage from federated learning,” in Proceedings - IEEE INFOCOM, vol. 2019-April, pp. 2512–2520, Dec. 2018, Accessed: May 11, 2021. [Online]. Available: http://arxiv.org/abs/1812.00535.
4. Atapattu, S., Ross, N., Jing, Y., He, Y., & Evans, J. S. (2019). Physical-layer security in full-duplex multi-hop multi-user wireless network with relay selection. IEEE Transactions on Wireless Communications, 18(2), 1216–1232. https://doi.org/10.1109/TWC.2018.2890609
5. Liu, Z., Guo, J., Lam, K.-Y., & Zhao, J. (2022). Efficient dropout-resilient aggregation for privacy-preserving machine learning. IEEE Transactions on Information Forensics and Security. https://doi.org/10.1109/TIFS.2022.3163592