The Mechanism of Metallosis After Total Hip Arthroplasty

Author:

Ude Chinedu C.ORCID,Esdaille Caldon J.,Ogueri Kenneth S.ORCID,Kan Ho-Man,Laurencin Samuel J.,Nair Lakshmi S.,Laurencin Cato T.ORCID

Abstract

Abstract Metallosis is defined as the accumulation and deposition of metallic particles secondary to abnormal wear from prosthetic implants that may be visualized as abnormal macroscopic staining of periprosthetic soft tissues. This phenomenon occurs secondary to the release of metal ions and particles from metal-on-metal hip implants in patients with end-stage osteoarthritis. Ions and particles shed from implants can lead to local inflammation of surrounding tissue and less commonly, very rare systemic manifestations may occur in various organ systems. With the incidence of total hip arthroplasty increasing as well as rates of revisions due to prosthesis failure from previous metal-on-metal implants, metallosis has become an important area of research. Bodily fluids are electrochemically active and react with biomedical implants. Particles, especially cobalt and chromium, are released from implants as they abrade against one another into the surrounding tissues. The body’s normal defense mechanism becomes activated, which can elicit a cascade of events, leading to inflammation of the immediate surrounding tissues and eventually implant failure. In this review, various mechanisms of metallosis are explored. Focus was placed on the atomic and molecular makeup of medical implants, the component/surgical associated factors, cellular responses, wear, tribocorrosion, joint loading, and fluid pressure associated with implantation. Current treatment guidelines for failed implants include revision surgery. An alternative treatment could be chelation therapy, which may drive future studies. Lay Summary Arthroplasty is an invasive procedure which disrupts surrounding joint tissues, and can greatly perturb the joint’s immune homeostasis. In some instances, this may pose a difficult challenge to implant integration. Particles released from implants into the surrounding joint tissues activate the body’s defense mechanism, eliciting a cascade of events, which leads to biotribocorrosion and electrochemical attacks on the implant. This process may lead to the release of even more particles. Besides, implant makeup and designs, frictions between bearing surfaces, corrosion of non-moving parts with modular junctions, surgical mistakes, patient factor, comorbidities, and loosened components can alter the expected function of implants. High accumulations of these ions and particulates result in metallosis, with accompanying adverse complications. Current recommended treatment for failed prosthesis is revision surgeries. However, chelation therapy as a prophylactic intervention may be useful in future efforts but more investigation is required.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3