Metabolization of the glycation compounds 3-deoxyglucosone and 5-hydroxymethylfurfural by Saccharomyces yeasts

Author:

Kertsch Anna-Lena,Brysch-Herzberg Michael,Hellwig Michael,Henle Thomas

Abstract

AbstractThe Maillard reaction products (MRPs) 3-deoxyglucosone (3-DG) and 5-hydroxymethylfurfural (HMF), which are formed during the thermal processing and storage of food, come into contact with technologically used yeasts during the fermentation of beer and wine. In order for the yeast cells to work efficiently, handling of the stress-inducing carbonyl compounds is essential. In the present study, the utilization of 3-DG and HMF by 13 Saccharomyces yeast strains (7 brewer’s yeast strains, 1 wine yeast strain, 6 yeast strains isolated from natural habitats) was investigated. All yeast strains studied were able to metabolize 3-DG and HMF. 3-DG is mainly reduced to 3-deoxyfructose (3-DF) and HMF is completely converted to 2,5-bishydroxymethylfuran (BHMF) and 5-formyl-2-furancarboxylic acid (FFCA). The ratio of conversion of HMF to BHMF and FFCA was found to be yeast strain-specific and no differences in the HMF stress tolerance of the yeast strains and species were observed. After incubation with 3-DG, varying amounts of intra- and extracellular 3-DF were found, pointing to a faster transport of 3-DG into the cells in the case of brewer’s yeast strains. Furthermore, the brewer’s yeast strains showed a significantly higher 3-DG stress resistance than the investigated yeast strains isolated from natural habitats. Thus, it can be shown for the first time that Saccharomyces yeast strains differ in their interaction of 3-DG induced carbonyl stress. Graphical abstract

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3