Evaluation of microtiter plate as a high-throughput screening platform for beer fermentation

Author:

Zhao Xiangdong,Kerpes Roland,Becker Thomas

Abstract

AbstractDownscaling the anaerobic fermentation in a microtiter plate (MTP) facilitates high throughput screening (HTS) applications. This study investigates the impacts of MTP configurations (scale, shaking, and cover) on the S. pastorianus beer fermentation compared to that in the shaking flask (SF) and European Brewing Convention (EBC) tube regarding fermentation performances and flavor attributes. The lager strains in MTPs accelerated cells reproduction and vitalization, sugar consumption, and glycerol accumulation. The microscale beer fermentation was closer to the SF but differed greatly from EBC tube fermentation depending on the MTP configurations. The downscaling from 2 mL to 0.2 mL in MTP increased the cell growth rate and vitality but did not change the maximum cell density. The shaking MTP did not promote early growth but sustained significantly higher cell numbers at the later fermentation stage. More than 1.5-folds acetaldehyde and higher alcohols, yet less than half esters, were obtained from the MTP and SF fermentations relative to that in the EBC tube. The air-tight MTP cover, as compared to the gas-permeable cover, not only balanced the above volatile flavors but also maintained integrity to the endogenous carbon dioxide pressure during beer fermentation. Additionally, fermentative activities were reduced by excluding air in either the material or the headspace of MTP. Hence, MTP configurations influenced S. pastorianus beer fermentation. These influences were partly attributed to their impacts on air accessibility. Conscious of the impacts, this study helps interpret the minimized fermentation and sheds light on the development of MTP based HTS platform for anaerobic cultivations.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3