Whey and post-frying oil as substrates in the process of microbial lipids obtaining: a value-added product with nutritional benefits

Author:

Wierzchowska KatarzynaORCID,Derewiaka Dorota,Zieniuk Bartłomiej,Nowak Dorota,Fabiszewska Agata

Abstract

AbstractYarrowia lipolytica has found many biotechnological applications. The species has a number of regulatory mechanisms to maintain cellular homeostasis, enabling biomass growth in complex media. The aim of this study was to evaluate the use of Y. lipolytica yeast as a platform for the simultaneous management of several industrial by-products and the production of microbial lipids with application potential in the chemical and food industries. Batch cultures of KKP 379 strain were conducted in media with post-frying rapeseed oil (PFO) and a by-product of curd cheese production—acid whey. To evaluate the potential of Yarrowia as a nutraceutical, quantitative and qualitative analyses of microbial sterols were carried out along with an assessment of the biomass mineral composition. It was indicated that the composition and content of sterols varied depending on the phase of cell growth in batch culture. During culture in medium with 20% (v/v) whey and 50 g/L PFO, the cellular lipid content reached 39% (w/w). The highest amount of sterols per dry biomass (7.38 mg/g) and cellular lipids (21.08 mg/g) was recorded after 38 h of culture. The dominant was ergosterol 12.10 mg/g (57%). In addition, the composition of carbon and nitrogen sources in the medium affected the content of selected elements in biomass, indicating that substrate modification can be a tool for manipulating the composition of yeast cells. The results of the study showed that the selection of waste substrates is an important factor in regulation of the cellular lipid accumulation efficiency, as well as the content of certain sterols.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3