Characterization of anti-drug antibody dynamics using a bivariate mixed hidden-markov model by nonlinear-mixed effects approach

Author:

Brekkan Ari,Lledo-Garcia Rocío,Lacroix Brigitte,Jönsson Siv,Karlsson Mats O.,Plan Elodie L.

Abstract

AbstractBiological therapies may act as immunogenic triggers leading to the formation of anti-drug antibodies (ADAs). Population pharmacokinetic (PK) models can be used to characterize the relationship between ADA and drug disposition but often rely on the ADA bioassay results, which may not be sufficiently sensitive to inform on this characterization.In this work, a methodology that could help to further elucidate the underlying ADA production and impact on the drug disposition was explored. A mixed hidden-Markov model (MHMM) was developed to characterize the underlying (hidden) formation of ADA against the biologic, using certolizumab pegol (CZP), as a test drug. CZP is a PEGylated Fc free TNF-inhibitor used in the treatment of rheumatoid arthritis and other chronic inflammatory diseases.The bivariate MHMM used information from plasma drug concentrations and ADA measurements, from six clinical studies (n = 845), that were correlated through a bivariate Gaussian function to infer about two hidden states; production and no-production of ADA influencing PK. Estimation of inter-individual variability was not supported in this case. Parameters associated with the observed part of the model were reasonably well estimated while parameters associated with the hidden part were less precise. Individual state sequences obtained using a Viterbi algorithm suggested that the model was able to determine the start of ADA production for each individual, being a more assay-independent methodology than traditional population PK. The model serves as a basis for identification of covariates influencing the ADA formation, and thus has the potential to identify aspects that minimize its impact on PK and/or efficacy.

Funder

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3