Enzyme Recovery from Biological Wastewater Treatment

Author:

Liu Ziyi,Smith Stephen R.ORCID

Abstract

Abstract Enzymes are high value industrial bio-catalysts with extensive applications in a wide range of manufacturing and processing sectors, including the agricultural, food and household care industries. The catalytic efficiency of enzymes can be several orders higher compared to inorganic chemical catalysts under mild conditions. However, the nutrient medium necessary for biomass culture represents a significant cost to industrial enzyme production. Activated sludge (AS) is a waste product of biological wastewater treatment and consists of microbial biomass that degrades organic matter by producing substantial quantities of hydrolytic enzymes. Therefore, enzyme recovery from AS offers an alternative, potentially viable approach to industrial enzyme production. Enzyme extraction from disrupted AS flocs is technically feasible and has been demonstrated at experimental-scale. A critical review of disruption techniques identified sonication as potentially the most effective and suitable method for enzyme extraction, which can be scaled up and is a familiar technology to the water industry. The yields of different enzymes are influenced by wastewater treatment conditions, and particularly the composition, and can also be controlled by feeding sludge with specific target substrates. Nevertheless, hydrolytic enzymes can be effectively extracted directly from waste AS without specific modifications to standard wastewater treatment processes. Purification, concentration and stabilisation/immobilisation techniques can also greatly expand the industrial application and increase the economic value and marketability of enzyme products extracted from AS. Concentrated and purified AS enzymes could readily substitute inorganic and/or commercial bioenzyme catalysts in many industrial applications including, for example, leather processing, and in detergent and animal feed formulation. Enzyme extraction from AS therefore offers significant economic benefits to the Water Industry by recovering valuable resources from wastewater. They can also optimise important waste treatment processes, such as the anaerobic digestion (AD) of sewage sludge, increasing biogas and renewable energy production. The enzyme-extracted sludge exhibits improved treatment properties, such as increased settleability, dewaterability, and anaerobic digestibility for biogas production, assisting sludge management by wastewater treatment plants (WWTPs) and enabling the further utilisation of the residual sludge. Graphic Abstract

Funder

China Scholarship Council

Yorkshire Water Services Limited

Imperial College London

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Reference194 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3