On metrizable subspaces and quotients of non-Archimedean spaces $$C_p(X, {\mathbb {K}})$$

Author:

Ka̧kol Jerzy,Śliwa Wiesław

Abstract

AbstractLet $${\mathbb {K}}$$ K be a non-trivially valued non-Archimedean complete field. Let $$\ell _{\infty }({\mathbb {N}}, {\mathbb {K}})$$ ( N , K ) [$$\ell _c({\mathbb {N}}, {\mathbb {K}});$$ c ( N , K ) ; $$c_0({\mathbb {N}}, {\mathbb {K}})$$ c 0 ( N , K ) ] be the space of all sequences in $${\mathbb {K}}$$ K that are bounded [relatively compact; convergent to 0] with the topology of pointwise convergence (i.e. with the topology induced from $${\mathbb {K}}^{{\mathbb {N}}}$$ K N ). Let X be an infinite ultraregular space and let $$C_p(X,{\mathbb {K}})$$ C p ( X , K ) be the space of all continuous functions from X to $${\mathbb {K}}$$ K endowed with the topology of pointwise convergence. It is easy to see that $$C_p(X,{\mathbb {K}})$$ C p ( X , K ) is metrizable if and only if X is countable. We show that for any X [with an infinite compact subset] the space $$C_p(X,{\mathbb {K}})$$ C p ( X , K ) has an infinite-dimensional [closed] metrizable subspace isomorphic to $$c_0({\mathbb {N}}, {\mathbb {K}})$$ c 0 ( N , K ) . Next we prove that $$C_p(X,{\mathbb {K}})$$ C p ( X , K ) has a quotient isomorphic to $$c_0({\mathbb {N}}, {\mathbb {K}})$$ c 0 ( N , K ) if and only if it has a complemented subspace isomorphic to $$c_0({\mathbb {N}}, {\mathbb {K}})$$ c 0 ( N , K ) . It follows that for any extremally disconnected compact space X the space $$C_p(X,{\mathbb {K}})$$ C p ( X , K ) has no quotient isomorphic to the space $$c_0({\mathbb {N}}, {\mathbb {K}})$$ c 0 ( N , K ) ; in particular, for any infinite discrete space D the space $$C_p(\beta D, {\mathbb {K}})$$ C p ( β D , K ) has no quotient isomorphic $$c_0({\mathbb {N}}, {\mathbb {K}})$$ c 0 ( N , K ) . Finally we investigate the question for which X the space $$C_p(X,{\mathbb {K}})$$ C p ( X , K ) has an infinite-dimensional metrizable quotient. We show that for any infinite discrete space D the space $$C_p(\beta D, {\mathbb {K}})$$ C p ( β D , K ) has an infinite-dimensional metrizable quotient isomorphic to some subspace $$\ell _c^0({\mathbb {N}}, {\mathbb {K}})$$ c 0 ( N , K ) of $${\mathbb {K}}^{{\mathbb {N}}}$$ K N . If $${\mathbb {K}}$$ K is locally compact then $$\ell _c^0({\mathbb {N}}, {\mathbb {K}})=\ell _{\infty }({\mathbb {N}}, {\mathbb {K}})$$ c 0 ( N , K ) = ( N , K ) . If $$|n1_{{\mathbb {K}}}|\ne 1$$ | n 1 K | 1 for some $$n\in {\mathbb {N}}$$ n N , then $$\ell _c^0({\mathbb {N}}, {\mathbb {K}})=\ell _c ({\mathbb {N}}, {\mathbb {K}}).$$ c 0 ( N , K ) = c ( N , K ) . In particular, $$C_p(\beta D, {\mathbb {Q}}_q)$$ C p ( β D , Q q ) has a quotient isomorphic to $$\ell _{\infty }({\mathbb {N}}, {\mathbb {Q}}_q)$$ ( N , Q q ) and $$C_p(\beta D, {\mathbb {C}}_q)$$ C p ( β D , C q ) has a quotient isomorphic to $$\ell _c({\mathbb {N}}, {\mathbb {C}}_q)$$ c ( N , C q ) for any prime number q.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis

Reference33 articles.

1. Arhangel’skii, A.V.: General Topology III, Encyclopedia of Mathematical Sciences, vol. 51. Springer, Berlin (1995)

2. Arhangel’skii, A.V.: Topological function spaces, Math. Appl., vol. 78. Kluwer Academic Publishers, Dordrecht (1992)

3. Arkhangell’ski, A.V.: A survey of $$C_p$$-theory. Quest. Answ. Gen. Topol. 5, 1–109 (1987)

4. Arkhangell’ski, A.V.: $$C_p$$-theory. In: Recent Progress in General Topology. North-Holland, Amsterdam, pp. 1–56 (1992)

5. Bachman, G., Beckenstein, E., Narici, L., Warner, S.: Rings of continuous functions with values in a topological field. Trans. Am. Math. Soc. 204, 91–112 (1975)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On complemented copies of the space c0 in spaces Cp(X,E)$C_p(X,E)$;Mathematische Nachrichten;2023-09-13

2. On subspaces of spaces $$C_p(X)$$ isomorphic to spaces $$c_{0}$$ and $$\ell _{q}$$ with the topology induced from $$\mathbb {R}^{\mathbb {N}}$$;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-08-18

3. Algebraic genericity and summability within the non-Archimedean setting;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2020-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3