Thom condition and monodromy

Author:

Giménez Conejero R.,Lê Dũng Tráng,Nuño-Ballesteros J. J.ORCID

Abstract

AbstractWe give the definition of the Thom condition and we show that given any germ of complex analytic function $$f:(X,x)\rightarrow ({\mathbb {C}},0)$$ f : ( X , x ) ( C , 0 ) on a complex analytic space X, there exists a geometric local monodromy without fixed points, provided that $$f\in {\mathfrak {m}}_{X,x}^2$$ f m X , x 2 , where $${\mathfrak {m}}_{X,x}$$ m X , x is the maximal ideal of $${\mathcal {O}}_{X,x}$$ O X , x . This result generalizes a well-known theorem of the second named author when X is smooth and proves a statement by Tibar in his PhD thesis. It also implies the A’Campo theorem that the Lefschetz number of the monodromy is equal to zero. Moreover, we give an application to the case that X has maximal rectified homotopical depth at x and show that a family of such functions with isolated critical points and constant total Milnor number has no coalescing of singularities.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3