Abstract
Abstract$$\textbf{S}$$
S
-structures on Lie algebras, introduced by Vinberg, represent a broad generalization of the notion of gradings by abelian groups. Gradings by, not necessarily reduced, root systems provide many examples of natural $$\textbf{S}$$
S
-structures. Here we deal with a situation not covered by these gradings: the short $$(\textbf{SL}_2\times \textbf{SL}_2)$$
(
SL
2
×
SL
2
)
-structures, where the reductive group is the simplest semisimple but not simple reductive group. The algebraic objects that coordinatize these structures are the J-ternary algebras of Allison, endowed with a nontrivial idempotent.
Funder
Agencia Española de Investigación
Diputación General de Aragón
Fundaa̧o para a Ciencia e a Tecnologia Portugal
Universidad de Zaragoza
Publisher
Springer Science and Business Media LLC