Algebraic properties of the maps $$\chi _n$$

Author:

Schoone Jan,Daemen Joan

Abstract

AbstractThe Boolean map $$\chi _n :\mathbb {F}_2^n \rightarrow \mathbb {F}_2^n,\ x \mapsto y$$ χ n : F 2 n F 2 n , x y defined by $$y_i = x_i + (x_{i+1}+1)x_{i+2}$$ y i = x i + ( x i + 1 + 1 ) x i + 2 (where $$i\in \mathbb {Z}/n\mathbb {Z}$$ i Z / n Z ) is used in various permutations that are part of cryptographic schemes, e.g., Keccak-f (the SHA-3-permutation), ASCON (the winner of the NIST Lightweight competition), Xoodoo, Rasta and Subterranean (2.0). In this paper, we study various algebraic properties of this map. We consider $$\chi _n$$ χ n (through vectorial isomorphism) as a univariate polynomial. We show that it is a power function if and only if $$n=1,3$$ n = 1 , 3 . We furthermore compute bounds on the sparsity and degree of these univariate polynomials, and the number of different univariate representations. Secondly, we compute the number of monomials of given degree in the inverse of $$\chi _n$$ χ n (if it exists). This number coincides with binomial coefficients. Lastly, we consider $$\chi _n$$ χ n as a polynomial map, to study whether the same rule ($$y_i = x_i + (x_{i+1}+1)x_{i+2}$$ y i = x i + ( x i + 1 + 1 ) x i + 2 ) gives a bijection on field extensions of $$\mathbb {F}_2$$ F 2 . We show that this is not the case for extensions whose degree is divisible by two or three. Based on these results, we conjecture that this rule does not give a bijection on any extension field of $$\mathbb {F}_2$$ F 2 .

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algebraic properties of the maps $$\chi _n$$;Designs, Codes and Cryptography;2024-04-10

2. Algebraic Structure of the Iterates of $$\chi $$;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3