Hardness estimates of the code equivalence problem in the rank metric

Author:

Reijnders Krijn,Samardjiska Simona,Trimoska Monika

Abstract

AbstractIn this paper, we analyze the hardness of the Matrix Code Equivalence () problem for matrix codes endowed with the rank metric, and provide the first algorithms for solving it. We do this by making a connection to another well-known equivalence problem from multivariate cryptography—the Isomorphism of Polynomials (). Under mild assumptions, we give tight reductions from to the homogenous version of the Quadratic Maps Linear Equivalence () problem, and vice versa. Furthermore, we present reductions to and from similar problems in the sum-rank metric, showing that is at the core of code equivalence problems. On the practical side, using birthday techniques known for , we present two algorithms: a probabilistic algorithm for running in time $$q^{\frac{2}{3}(n+m)}$$ q 2 3 ( n + m ) up to a polynomial factor, and a deterministic algorithm for with roots, running in time $$q^{\min \{m,n,k\}}$$ q min { m , n , k } up to a polynomial factor. Lastly, to confirm these findings, we solve randomly-generated instances of using these two algorithms.

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Alfarano G.N., Lobillo F.J., Neri A., Wachter-Zeh A.: Sum-rank product codes and bounds on the minimum distance. Finite Fields Appl. 80, 102013 (2022).

2. Aragon N., Blazy O., Deneuville J.-C., Gaborit P., Hauteville A., Ruatta O., Tillich J.-P., Zemor G., Melchor C.A., Bettaieb S., Bidoux L., Bardet M., Otmani A.: ROLLO (Rank-Ouroboros, LAKE and LOCKER) (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

3. Aragon N., Gaborit P., Hauteville A., Ruatta O., Zémor G.: Low rank parity check codes: new decoding algorithms and applications to cryptography. IEEE Trans. Inf. Theory 65, 7697–7717 (2019).

4. Barenghi A., Biasse J.-F., Persichetti E., Santini P.: LESS-FM: fine-tuning signatures from the code equivalence problem. In: Post-Quantum Cryptography: 12th International Workshop, PQCrypto 2021, Daejeon, South Korea, July 20–22, 2021, Proceedings 12, pp. 23–43. Springer (2021).

5. Barenghi A., Biasse J.-F., Persichetti E., Santini P.: On the computational hardness of the code equivalence problem in cryptography. Cryptology ePrint Archive, Paper 2022/967. https://eprint.iacr.org/2022/967 (2022).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3