Abstract
AbstractIn this paper we study the number of special directions of sets of cardinality divisible by p on a finite plane of order p, where p is a prime. We show that there is no such a set with exactly two special directions. We characterise sets with exactly three special directions which answers a question of Ghidelli in negative. Further we introduce methods to construct sets of minimal cardinality that have exactly four special directions for small values of p.
Funder
Fulbright Association
Magyar Állami Eötvös Ösztöndíj
OTKA
János Bolyai ösztöndíj
Bolyai +
Eötvös Loránd University
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Bíró A., Lev V.F.: Uncertainty in finite planes. J. Funct. Anal. 281(3), 109026 (2021).
2. Coven E.M., Meyerowitz A.: Tiling the integers with translates of one finite set. J. Algebra 212(1), 161–74 (1999).
3. Dress A.W.M., Klin M.H., Muzychuk M.E.: On p-configurations with few slopes in the affine plane over $${\mathbb{F} }_p$$ and a theorem of W.Burnside’s. Bayreuther Math. Schriften 40, 7–19 (1992).
4. Fallon T., Mayeli A., Villano D.: The Fuglede Conjecture Holds in $${\mathbb{F}}_p^3$$ for $$p= 5, 7$$, to Appear in Proceeding of AMS (2019), arXiv:1902.02936.
5. Gács A.: On a generalization of Rédei’s theorem. Combinatorica 23, 585–598 (2003).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献