1. Adleman L., DeMarrais J.: A subexponential algorithm for discrete logarithms over all finite fields. In: Advances in Cryptology—CRYPTO ’93, 13th Annual International Cryptology Conference, Lecture Notes in Comput. Sci., pp. 147–158. Springer, Berlin (1993).
2. Barbulescu R., Gaudry P., Joux A., Thomé E.: A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. In: Advances in Cryptology—EUROCRYPT 2014, 33rd Annual International Conference, Lecture Notes in Comput. Sci., pp. 1–16. Springer, Berlin (2014).
3. Cohen H., Frey G., Avanzi R., Doche C., Lange T., Nguyen K., Vercauteren F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005).
4. De Mulder E., Hutter M., Marson M., Pearson P.: Using Bleichenbacher’s solution to the Hidden Number Problem to attack nonce leaks in 384-bit ECDSA. In: Cryptographic Hardware and Embedded Systems-CHES 2013, Lecture Notes in Comput. Sci., pp. 435–452. Springer, Berlin (2013).
5. De Mulder E., Hutter M., Marson M., Pearson P.: Using Bleichenbacher’s solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA: extended version. J. Cryptogr. Eng. 4(1), 33–45 (2014).