SFSADE: an improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strategy

Author:

Pan Qingtao,Tang JunORCID,Wang Haoran,Li Hao,Chen Xi,Lao Songyang

Abstract

AbstractThe differential evolution (DE) algorithm is an efficient random search algorithm based on swarm intelligence for solving optimization problems. It has the advantages of easy implementation, fast convergence, strong optimization ability and good robustness. However, the performance of DE is very sensitive to the design of different operators and the setting of control parameters. To solve these key problems, this paper proposes an improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strategy (SFSADE). It innovatively incorporates the idea of the shuffled frog-leaping algorithm into DE, and at the same time, it cleverly introduces a new strategy of classification mutation, and also designs a new adaptive adjustment mechanism for control parameters. In addition, we have carried out a large number of simulation experiments on the 25 benchmark functions of CEC 2005 and two nonparametric statistical tests to comprehensively evaluate the performance of SFSADE. Finally, the results of simulation experiments and nonparametric statistical tests show that SFSADE is very effective in improving DE, and significantly improves the overall diversity of the population in the process of dynamic evolution. Compared with other advanced DE variants, its global search speed and optimization performance also has strong competitiveness.

Funder

National Natural Science Foundation of China

Young Talents Lifting Projec

Natural Science Foundation of Hunan Province

NUDT Scientific Research Projec

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3