A review of spam email detection: analysis of spammer strategies and the dataset shift problem

Author:

Jáñez-Martino FranciscoORCID,Alaiz-Rodríguez Rocío,González-Castro Víctor,Fidalgo Eduardo,Alegre Enrique

Abstract

AbstractSpam emails have been traditionally seen as just annoying and unsolicited emails containing advertisements, but they increasingly include scams, malware or phishing. In order to ensure the security and integrity for the users, organisations and researchers aim to develop robust filters for spam email detection. Recently, most spam filters based on machine learning algorithms published in academic journals report very high performance, but users are still reporting a rising number of frauds and attacks via spam emails. Two main challenges can be found in this field: (a) it is a very dynamic environment prone to the dataset shift problem and (b) it suffers from the presence of an adversarial figure, i.e. the spammer. Unlike classical spam email reviews, this one is particularly focused on the problems that this constantly changing environment poses. Moreover, we analyse the different spammer strategies used for contaminating the emails, and we review the state-of-the-art techniques to develop filters based on machine learning. Finally, we empirically evaluate and present the consequences of ignoring the matter of dataset shift in this practical field. Experimental results show that this shift may lead to severe degradation in the estimated generalisation performance, with error rates reaching values up to $$48.81\%$$ 48.81 % .

Funder

Universidad de León

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3