Robust and privacy-preserving collaborative training: a comprehensive survey

Author:

Yang Fei,Zhang Xu,Guo Shangwei,Chen Daiyuan,Gan Yan,Xiang Tao,Liu Yang

Abstract

AbstractIncreasing numbers of artificial intelligence systems are employing collaborative machine learning techniques, such as federated learning, to build a shared powerful deep model among participants, while keeping their training data locally. However, concerns about integrity and privacy in such systems have significantly hindered the use of collaborative learning systems. Therefore, numerous efforts have been presented to preserve the model’s integrity and reduce the privacy leakage of training data throughout the training phase of various collaborative learning systems. This survey seeks to provide a systematic and comprehensive evaluation of security and privacy studies in collaborative training, in contrast to prior surveys that only focus on one single collaborative learning system. Our survey begins with an overview of collaborative learning systems from various perspectives. Then, we systematically summarize the integrity and privacy risks of collaborative learning systems. In particular, we describe state-of-the-art integrity attacks (e.g., Byzantine, backdoor, and adversarial attacks) and privacy attacks (e.g., membership, property, and sample inference attacks), as well as the associated countermeasures. We additionally provide an analysis of open problems to motivate possible future studies.

Funder

Key Research Project of Zhejiang Lab

China Postdoctoral Science Foundation

Key R\&D Program of Zhejiang

National Natural Science Foundation of China

CCF- AFSG Research Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3